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Among the wide-ranging areas of interest in organic solid-state Scheme 1
photochemistrythe drive to achieve asymmetric synthesis has led, o

€
inter alia, to the development of the chiral ionic auxiliary approach o /©)L° i oo o i
for generating chiral products from achiral reactant molecules in = Heo ~Joate HO, d v J\Q oH
crystalline solidg¢fHowever, in many cases of interest, the reactant : m * ﬁ%
material does not form single crystals of appropriate size and quality Ha My 2 diazomethane
to allow structural properties to be established using single-crystal 1 work Enantiomers of 2

X-ray diffraction techniques, thus limiting the opportunity to b .
establish structurereactivity correlations in such cast#n this program GSAS?the crystal structurédwere used as a basis for
paper, we demonstrate the successful application of modern powde€Stablishing structurereactivity correlations.

X-ray diffraction techniques, using the direct space strétégy The crystal structures dfa and 1b are essentially isostructural
structure solution, to establish structsmeactivity correlations for ~ @nd contain one formula unit in the asymmetric unit. In each case,

enantioselective reactions carried out within a series of photoreactivet® molecular conformation adopted byn the crystal structure is
crystalline materials, focusing in particular on rationalization of the SUCh that the ketone oxygen atom has an unfavorable disposition
enantiomeric excesses (ee) observed in these reactions. for abstraction of |/Hg but a favorable disposition for abstraction

We focus on salts containing the carboxylate derivativieasfs of Ha/Ha' (Figure 2a,b). Given the enantiotopic relationship between

9-decalyl arylketone) shown in Scheme 1, which undergoes a Ha @nd Hy, abstraction of i or Ha' leads, respectively, to the
Norrish type Il reaction under UV irradiation. The molecdle (WO enantiomers of the chiral cyclobutanol photoprodzishown

contains foury-hydrogen atoms (ki Ha, Hs, and Hs) that may in Scheme 1. Moreover, the conformation dfin the crystal
be potentially abstracted in this reaction, and subsequent Yangstructures ofiaandlb (Figure 2a,b) is such that abstraction of the

cyclization of the 1,4-biradical leads to a cyclobutanol photoprod- Sameenantiotopic H atom (K) is favored in each case (on the
uct? Abstraction of H/Ha leads to the two enantiomers of a given grounds that it is significantly closer to the carbonyl oxygen atom).
chiral cyclobutanol product (as shown in Scheme 1), whereas These features are consistent with the high values of ee observed

abstraction of i/Hg leads to the two enantiomers of a different  Or the reactions itaand1b and the fact that theameenantiomer
chiral cyclobutanol product (not shown). of the cyclobutanol photoproduct is obtained in excess in each

In this work, crystalline 1:1 salts were formed betweeand case
optically pure aminesg (1R,2S)-(—)ephedrinep: (1R2R)-(—)-
pseudoephedrine; (R)-(+)-o-methylbenzylamine)]. Irradiation of
these materials with Pyrex-filtered UV radiation is fo@nal yield
the two enantiomers of the chiral cyclobutai®(Scheme 1) via
abstraction of H/Ha. However, the reactions contrast markedly
in the values of ee observed, with high ee far (82.8% ee at
13.7% conversion) andb (84.4% ee at 17.3% conversion), but
low ee forlc (11.4% ee at 27.9% conversion).

Given the lack of suitable single crystals b&—c, the crystal J . . . s s .
structures were determined directly from powder X-ray diffraction T e e
data and provide a basis for rationalization of the observed Figure 1. Experimental ¢ marks), calculated (solid line), and difference
differences in ee. In each case, powder X-ray diffraction data were (lower line) powder X-ray diffraction profiles in the final Rietveld refinement
recorded, followed by successful unit cell determinaticand space for 1b.
group assignmenP@;2,2; for laandlb; P2; for 1c). From density

considerations, the number of formula units in the asymmetric unit
(Z) is deduced to b&' = 1 for laand1b andZ' = 2 for 1c.
Profile parameters for the powder X-ray diffraction patterns were
obtained using the Le Bail fitting procedufand structure solution
was carried out using the direct-space genetic algorithm (GA) H
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techniqué® implemented in the program EAGER Following
Rietveld refinementa [results for which are shown in Figure 1

(for 1b) and in Supporting Information (fata and1c)] using the Figure 2. Conformation ofl in the crystal structures (aa, (b) 1b, and
(c) 1c. For 1c, the two independent molecules (denoted types A and B in
t Cardiff University. the text) are shown. In each case, the H atom implicated in the preferred
* University of British Columbia. abstraction reaction pathway is indicated by an asterisk.
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Supporting Information Available: Crystallographic data and
results from Rietveld refinements. This material is available free of
charge via the Internet at http://pubs.acs.org.
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Figure 3. Crystal structure oflc. The two independent molecules bf
andc, and their hydrogen-bonding networks, are denoted A and B. Hydrogen
atoms are omitted for clarity.

The low ee forlcis also rationalized directly from the crystal
structure. In this structure, the asymmetric unit contains two
independent molecules df (denoted types A and B) and two
independent molecules af The crystal structure (Figure 3) has
hydrogen-bonded chains running along thaxis, with molecules
of 1 andc alternating along these chains; there are two crystallo-
graphically independent chains, one containing only type A
molecules ofl and the other containing only type B molecules of
1, and each chain forms hydrogen-bonded cross-linkages to an
equivalent chain. Crucially, the molecules of types A and B differ
in molecular conformation (see Figure 2c) and represent chiral
conformations of opposite chirality [there is a near-mirror relation-
ship (rms deviation 0.1 A) between the conformations of types A
and B]. Clearly, the conformation is predisposed toward abstraction
of Ha in one case and abstraction ofiyHn the other, leading to
preferential formation of cyclobutanol photoproductsopposite
chirality. We therefore infer from the crystal structure that both
enantiomers o2 will be obtained in significant yield, although, as
the relationship between the environments of molecule types A and
B in the structure is diastereoisomeric, the rates of reaction to
produce the two enantiomers ®fre not necessarily identical, and
the product may be expected to be richer in one enantiomer. Thus,
on the basis of the crystal structure, a relatively low (but nonzero)

ee is anticipated, as indeed observed experimentally. It is clear that

“conformational enantiomerisri” (rather than crystallographic
disorder}® which has been found to reduce ee in other solid-state
photochemical reactions) is responsible for the relatively low ee
observed forlc.

Although distance-baseg-hydrogen atom abstraction param-
eterd® can provide quantitative rationalization of observed values

of ee in solid-state reactions, we have not attempted to derive such
parameters in the present case as the results may be biased by tthZ)

geometric restraints applied in the Rietveld refineniéhteverthe-
less, it is clear that the crystal structures determined here from
powder X-ray diffraction data allow a direct and unequivocal
understanding of the significant differences in ee observeddor
and 1b in comparison withlc. Importantly, this work reiterates
that structural problems in solid-state chemistry, which have
traditionally been tackled using single-crystal X-ray diffraction, can
also be directly amenable to rationalization by exploiting modern
techniques for structure determination from powder X-ray diffrac-
tion data.
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